@@ -44,34 +44,32 @@ prediction = ff$predict_newdata(newdata, task)
4444prediction
4545# > <PredictionRegr> for 3 observations:
4646# > row_ids truth response
47- # > 1 NA 450.0689
48- # > 2 NA 472.9712
49- # > 3 NA 482.1500
47+ # > 1 NA 446.8101
48+ # > 2 NA 473.1211
49+ # > 3 NA 485.5068
5050prediction = ff $ predict(task , 142 : 144 )
51- # > Warning in warn_deprecated("Task$data_formats"): Task$data_formats is
52- # > deprecated and will be removed in the future.
5351prediction
5452# > <PredictionRegr> for 3 observations:
5553# > row_ids truth response
56- # > 1 461 455.8978
57- # > 2 390 414.0475
58- # > 3 432 402.1915
54+ # > 1 461 455.3990
55+ # > 2 390 409.9824
56+ # > 3 432 396.0751
5957prediction $ score(measure )
6058# > regr.rmse
61- # > 22.3074
59+ # > 23.95318
6260
6361ff = Forecaster $ new(lrn(" regr.ranger" ), 1 : 3 )
6462resampling = rsmp(" forecast_holdout" , ratio = 0.8 )
6563rr = resample(task , ff , resampling )
6664rr $ aggregate(measure )
6765# > regr.rmse
68- # > 105.1936
66+ # > 106.6029
6967
7068resampling = rsmp(" forecast_cv" )
7169rr = resample(task , ff , resampling )
7270rr $ aggregate(measure )
7371# > regr.rmse
74- # > 54.36987
72+ # > 49.93778
7573```
7674
7775### Multivariate
@@ -90,45 +88,47 @@ prediction = ff$predict(new_task, 142:144)
9088ff $ predict(new_task , 142 : 144 )
9189# > <PredictionRegr> for 3 observations:
9290# > row_ids truth response
93- # > 1 461 456.5591
94- # > 2 390 410.6596
95- # > 3 432 408.2172
91+ # > 1 461 455.7255
92+ # > 2 390 409.7808
93+ # > 3 432 405.6454
9694prediction $ score(measure )
9795# > regr.rmse
98- # > 18.36813
96+ # > 19.26714
9997
10098row_ids = new_task $ nrow - 0 : 2
10199ff $ predict_newdata(new_task $ data(rows = row_ids ), new_task )
102100# > <PredictionRegr> for 3 observations:
103101# > row_ids truth response
104- # > 1 432 412.9277
105- # > 2 390 391.1173
106- # > 3 461 398.0259
102+ # > 1 432 411.3026
103+ # > 2 390 391.5954
104+ # > 3 461 396.3538
107105newdata = new_task $ data(rows = row_ids , cols = new_task $ feature_names )
108106ff $ predict_newdata(newdata , new_task )
109107# > <PredictionRegr> for 3 observations:
110108# > row_ids truth response
111- # > 1 NA 412.9277
112- # > 2 NA 391.1173
113- # > 3 NA 398.0259
109+ # > 1 NA 411.3026
110+ # > 2 NA 391.5954
111+ # > 3 NA 396.3538
114112
115113resampling = rsmp(" forecast_holdout" , ratio = 0.8 )
116114rr = resample(new_task , ff , resampling )
117115rr $ aggregate(measure )
118116# > regr.rmse
119- # > 81.0461
117+ # > 81.93515
120118
121119resampling = rsmp(" forecast_cv" )
122120rr = resample(new_task , ff , resampling )
123121rr $ aggregate(measure )
124122# > regr.rmse
125- # > 44.99413
123+ # > 42.9069
126124```
127125
128- ### WIP
126+ ### mlr3pipelines integration
129127
130128``` r
131- # doesn't work since the graph learner does its own thing
132129glrn = as_learner(pop %>> % ff )$ train(task )
133- glrn $ predict(task , 142 : 144 )
130+ prediction = glrn $ predict(task , 142 : 144 )
131+ prediction $ score(measure )
132+ # > regr.rmse
133+ # > 18.60496
134134```
0 commit comments