-
Notifications
You must be signed in to change notification settings - Fork 18.6k
Description
Hi I am using Caffe on Ubuntu 14.04
CUDA version 7.0
cudnn version 2
GPU : NVIDIA GT 730
In caffe first I get the initialization done and then I load the imagenet model (Alexnet). I also initialize the gpu using set_mode_gpu()
After that I take an image. Lets call the image as x.
I copy this image onto the caffe source blob. Then I perform a forward pass for this image by using : net.forward(end='fc7')
Then I extract the 4096 dimensional fc7 output.(the activation features of the fc7 layer)
The problem I am facing is that when I run the same code multiple times, everytime I obtain a different result. That is, in GPU mode, everytime the activation features are different for the same image. When I am using forward pass, the function of the network is supposed to be deterministic right ? So I should get the same output everytime for the same image.
On the other hand, when I run caffe on cpu by using set_mode_cpu() everything works perfectly, i.e, I get the same output each time
The code used and the outputs obtained are shown below. I am not able to understand what the problem is. Is it that the problem is caused due to GPU rounding off ? But the errors are very large. Or is it due to some issues with the latest CUDNN version ? Or is it something else altogether ?
Following is the CODE
#1) IMPORT libraries
from cStringIO import StringIO
import numpy as np
import scipy.ndimage as nd
import PIL.Image
from IPython.display import clear_output, Image, display
from google.protobuf import text_format
import scipy
import matplotlib.pyplot as plt
import caffe
#2) IMPORT Caffe Models and define utility functions
model_path = '../../../caffe/models/bvlc_alexnet/'
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_reference_caffenet.caffemodel'
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('tmp.prototxt', 'w').write(str(model))
net = caffe.Classifier('tmp.prototxt', param_fn,
mean = np.float32([104.0, 116.0, 122.0]), # ImageNet mean, training set dependent
channel_swap = (2,1,0),# the reference model has channels in BGR order instead of RGB
image_dims=(227, 227))
caffe.set_mode_gpu()
# caffe.set_mode_cpu()
# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
return np.dstack((img + net.transformer.mean['data'])[::-1])
#3) LOADING Image and setting constants
target_img = PIL.Image.open('alpha.jpg')
target_img = target_img.resize((227,227), PIL.Image.ANTIALIAS)
target_img=np.float32(target_img)
target_img=preprocess(net, target_img)
end='fc7'
#4) Setting the source image and making the forward pass to obtain fc7 activation features
src = net.blobs['data']
src.reshape(1,3,227,227) # resize the network's input image size
src.data[0] = target_img
dst = net.blobs[end]
net.forward(end=end)
target_data = dst.data[0]
print dst.data
FOLLOWING is the output that I obtained for 'print dst.data' when I ran the above code multiple times
output on 1st execution of code
[[-2.22313166 -1.66219997 -1.67641115 ..., -3.62765646 -2.78621101
-5.06158161]]
output on 2nd execution of code
[[ -82.72431946 -372.29296875 -160.5559845 ..., -367.49728394 -138.7151947
-343.32080078]]
output on 3rd execution of code
[[-10986.42578125 -10910.08105469 -10492.50390625 ..., -8597.87011719
-5846.95898438 -7881.21923828]]
output on 4th execution of code
[[-137360.3125 -130303.53125 -102538.78125 ..., -40479.59765625
-5832.90869141 -1391.91259766]]