Skip to content

Updating with empty rows #1

@avril-affine

Description

@avril-affine

Typically during training a DL model, there are many train losses/metrics and less validation losses/metrics. In this case, there would not be many "validation" update rows. Here is an example:

In [1]: from cox.store import Store

In [2]: store = Store('test')
Logging in: /home/panda/test/05470312-67d5-405b-ae74-d81b3b770be4

In [3]: store.add_table('metrics', {'train': float, 'val': float}
   ...: )
Out[3]: <cox.store.Table at 0x7f759f9af0b8>

In [4]: store['metrics']
Out[4]: <cox.store.Table at 0x7f759f9af0b8>

In [5]: t = store['metrics']

In [6]: t.update_row({'train': 1.23})

In [7]: t.flush_row()
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
~/anaconda3/envs/dev/lib/python3.7/site-packages/cox/store.py in flush_row(self)
    390             try:
--> 391                 assert self._curr_row_data[k] is not None
    392             except:

AssertionError:

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
<ipython-input-7-d818515cef82> in <module>
----> 1 t.flush_row()

~/anaconda3/envs/dev/lib/python3.7/site-packages/cox/store.py in flush_row(self)
    397                     msg = 'Col %s is None!' % k
    398
--> 399                 raise ValueError(msg)
    400
    401         for k, v in self._curr_row_data.items():

ValueError: Col val is None!

Would it be possible to add an optional argument to flush_row() to allow None or would that mess things up down the line?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions