3. Data model

3.1. Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations between objects. Even code is represented by objects.

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may think of it as the object’s address in memory. The is operator compares the identity of two objects; the id() function returns an integer representing its identity.

CPython implementation detail: For CPython, id(x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines the possible values for objects of that type. The type() function returns an object’s type (which is an object itself). Like its identity, an object’s type is also unchangeable. [1]

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is unchangeable once they are created are called immutable. (The value of an immutable container object that contains a reference to a mutable object can change when the latter’s value is changed; however the container is still considered immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to collect garbage containing circular references. See the documentation of the gc module for information on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on immediate finalization of objects when they become unreachable (so you should always close files explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be collectable. Also note that catching an exception with a tryexcept statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also provide an explicit way to release the external resource, usually a close() method. Programs are strongly recommended to explicitly close such objects. The tryfinally statement and the with statement provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container, only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for immutable types, operations that compute new values may actually return a reference to any existing object with the same type and value, while for mutable objects this is not allowed. For example, after a = 1; b = 1, a and b may or may not refer to the same object with the value one, depending on the implementation. This is because int is an immutable type, so the reference to 1 can be reused. This behaviour depends on the implementation used, so should not be relied upon, but is something to be aware of when making use of object identity tests. However, after c = []; d = [], c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that e = f = [] assigns the same object to both e and f.)

3.2. The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.’ These are attributes that provide access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1. None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t explicitly return anything. Its truth value is false.

3.2.2. NotImplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in name NotImplemented. Numeric methods and rich comparison methods should return this value if they do not implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some other fallback, depending on the operator.) It should not be evaluated in a boolean context.

See Implementing the arithmetic operations for more details.

Changed in version 3.9: Evaluating NotImplemented in a boolean context was deprecated.

Changed in version 3.14: Evaluating NotImplemented in a boolean context now raises a TypeError. It previously evaluated to True and emitted a DeprecationWarning since Python 3.9.

3.2.3. Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal ... or the built-in name Ellipsis. Its truth value is true.

3.2.4. numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions. Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computed by __repr__() and __str__(), have the following properties:

  • They are valid numeric literals which, when passed to their class constructor, produce an object having the value of the original numeric.

  • The representation is in base 10, when possible.

  • Leading zeros, possibly excepting a single zero before a decimal point, are not shown.

  • Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

  • A sign is shown only when the number is negative.

Python distinguishes between integers, floating-point numbers, and complex numbers:

3.2.4.1. numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

Note

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask operations involving negative integers.

There are two types of integers:

Integers (int)

These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)

These represent the truth values False and True. The two objects representing the values False and True are the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string, the strings "False" or "True" are returned, respectively.

3.2.4.2. numbers.Real (float)

These represent machine-level double precision floating-point numbers. You are at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does not support single-precision floating-point numbers; the savings in processor and memory usage that are usually the reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the language with two kinds of floating-point numbers.

3.2.4.3. numbers.Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating-point numbers. The same caveats apply as for floating-point numbers. The real and imaginary parts of a complex number z can be retrieved through the read-only attributes z.real and z.imag.

3.2.5. Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function len() returns the number of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, …, n-1. Item i of sequence a is selected by a[i]. Some sequences, including built-in sequences, interpret negative subscripts by adding the sequence length. For example, a[-2] equals a[n-2], the second to last item of sequence a with length n.

Sequences also support slicing: a[i:j] selects all items with index k such that i <= k < j. When used as an expression, a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice positions.

Some sequences also support “extended slicing” with a third “step” parameter: a[i:j:k] selects all items of a with index x where x = i + n*k, n >= 0 and i <= x < j.

Sequences are distinguished according to their mutability:

3.2.5.1. Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to other objects, these other objects may be mutable and may be changed; however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings

A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000 - U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in the string is represented as a string object with length 1. The built-in function