os — Miscellaneous operating system interfaces

Source code: Lib/os.py


This module provides a portable way of using operating system dependent functionality. If you just want to read or write a file see open(), if you want to manipulate paths, see the os.path module, and if you want to read all the lines in all the files on the command line see the fileinput module. For creating temporary files and directories see the tempfile module, and for high-level file and directory handling see the shutil module.

Notes on the availability of these functions:

  • The design of all built-in operating system dependent modules of Python is such that as long as the same functionality is available, it uses the same interface; for example, the function os.stat(path) returns stat information about path in the same format (which happens to have originated with the POSIX interface).

  • Extensions peculiar to a particular operating system are also available through the os module, but using them is of course a threat to portability.

  • All functions accepting path or file names accept both bytes and string objects, and result in an object of the same type, if a path or file name is returned.

  • On VxWorks, os.popen, os.fork, os.execv and os.spawn*p* are not supported.

  • On WebAssembly platforms, Android and iOS, large parts of the os module are not available or behave differently. APIs related to processes (e.g. fork(), execve()) and resources (e.g. nice()) are not available. Others like getuid() and getpid() are emulated or stubs. WebAssembly platforms also lack support for signals (e.g. kill(), wait()).

Note

All functions in this module raise OSError (or subclasses thereof) in the case of invalid or inaccessible file names and paths, or other arguments that have the correct type, but are not accepted by the operating system.

exception os.error

An alias for the built-in OSError exception.

os.name

The name of the operating system dependent module imported. The following names have currently been registered: 'posix', 'nt', 'java'.

See also

sys.platform has a finer granularity. os.uname() gives system-dependent version information.

The platform module provides detailed checks for the system’s identity.

File Names, Command Line Arguments, and Environment Variables

In Python, file names, command line arguments, and environment variables are represented using the string type. On some systems, decoding these strings to and from bytes is necessary before passing them to the operating system. Python uses the filesystem encoding and error handler to perform this conversion (see sys.getfilesystemencoding()).

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() function: see filesystem_encoding and filesystem_errors members of PyConfig.

Changed in version 3.1: On some systems, conversion using the file system encoding may fail. In this case, Python uses the surrogateescape encoding error handler, which means that undecodable bytes are replaced by a Unicode character U+DCxx on decoding, and these are again translated to the original byte on encoding.

The file system encoding must guarantee to successfully decode all bytes below 128. If the file system encoding fails to provide this guarantee, API functions can raise UnicodeError.

See also the locale encoding.

Python UTF-8 Mode

Added in version 3.7: See PEP 540 for more details.

The Python UTF-8 Mode ignores the locale encoding and forces the usage of the UTF-8 encoding:

Note that the standard stream settings in UTF-8 mode can be overridden by PYTHONIOENCODING (just as they can be in the default locale-aware mode).

As a consequence of the changes in those lower level APIs, other higher level APIs also exhibit different default behaviours:

  • Command line arguments, environment variables and filenames are decoded to text using the UTF-8 encoding.

  • os.fsdecode() and os.fsencode() use the UTF-8 encoding.

  • open(), io.open(), and codecs.open() use the UTF-8 encoding by default. However, they still use the strict error handler by default so that attempting to open a binary file in text mode is likely to raise an exception rather than producing nonsense data.

The Python UTF-8 Mode is enabled if the LC_CTYPE locale is C or POSIX at Python startup (see the PyConfig_Read() function).

It can be enabled or disabled using the -X utf8 command line option and the PYTHONUTF8 environment variable.

If the PYTHONUTF8 environment variable is not set at all, then the interpreter defaults to using the current locale settings, unless the current locale is identified as a legacy ASCII-based locale (as described for PYTHONCOERCECLOCALE), and locale coercion is either disabled or fails. In such legacy locales, the interpreter will default to enabling UTF-8 mode unless explicitly instructed not to do so.

The Python UTF-8 Mode can only be enabled at the Python startup. Its value can be read from sys.flags.utf8_mode.

See also the UTF-8 mode on Windows and the filesystem encoding and error handler.

See also

PEP 686

Python 3.15 will make Python UTF-8 Mode default.

Process Parameters

These functions and data items provide information and operate on the current process and user.

os.ctermid()

Return the filename corresponding to the controlling terminal of the process.

Availability: Unix, not WASI.

os.environ

A mapping object where keys and values are strings that represent the process environment. For example, environ['HOME'] is the pathname of your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

This mapping is captured the first time the os module is imported, typically during Python startup as part of processing site.py. Changes to the environment made after this time are not reflected in os.environ, except for changes made by modifying os.environ directly.

This mapping may be used to modify the environment as well as query the environment. putenv() will be called automatically when the mapping is modified.

On Unix, keys and values use sys.getfilesystemencoding() and 'surrogateescape' error handler. Use environb if you would like to use a different encoding.

On Windows, the keys are converted to uppercase. This also applies when getting, setting, or deleting an item. For example, environ['monty'] = 'python' maps the key 'MONTY' to the value 'python'.

Note

Calling putenv() directly does not change os.environ, so it’s better to modify os.environ.

Note

On some platforms, including FreeBSD and macOS, setting environ may cause memory leaks. Refer to the system documentation for putenv().

You can delete items in this mapping to unset environment variables. unsetenv() will be called automatically when an item is deleted from os.environ, and when one of the pop() or clear() methods is called.

Changed in version 3.9: Updated to support PEP 584’s merge (|) and update (|=) operators.

os.environb

Bytes version of environ: a mapping object where both keys and values are bytes objects representing the process environment. environ and environb are synchronized (modifying environb updates environ, and vice versa).

environb is only available if supports_bytes_environ is True.

Added in version 3.2.

Changed in version 3.9: Updated to support PEP 584’s merge (|) and update (|=) operators.

os.chdir(path)
os.fchdir(fd)
os.getcwd()

These functions are described in Files and Directories.

os.fsencode(filename)

Encode path-like filename to the filesystem encoding and error handler; return bytes unchanged.

fsdecode() is the reverse function.

Added in version 3.2.

Changed in version 3.6: Support added to accept objects implementing the os.PathLike interface.

os.fsdecode(filename)

Decode the path-like filename from the filesystem encoding and error handler; return str unchanged.

fsencode() is the reverse function.

Added in version 3.2.

Changed in version 3.6: Support added to accept objects implementing the os.PathLike interface.

os.fspath(path)

Return the file system representation of the path.

If str or bytes is passed in, it is returned unchanged. Otherwise __fspath__() is called and its value is returned as long as it is a str or bytes object. In all other cases, TypeError is raised.

Added in version 3.6.

class os.PathLike

An abstract base class for objects representing a file system path, e.g. pathlib.PurePath.

Added in version 3.6.

abstractmethod __fspath__()

Return the file system path representation of the object.

The method should only return a str or bytes object, with the preference being for str.

os.getenv(key, default=None)

Return the value of the environment variable key as a string if it exists, or default if it doesn’t. key is a string. Note that since getenv() uses os.environ, the mapping of getenv() is similarly also captured on import, and the function may not reflect future environment changes.

On Unix, keys and values are decoded with sys.getfilesystemencoding() and 'surrogateescape' error handler. Use os.getenvb() if you would like to use a different encoding.

Availability: Unix, Windows.

os.getenvb(key, default=None)

Return the value of the environment variable key as bytes if it exists, or default if it doesn’t. key must be bytes. Note that since getenvb() uses os.environb, the mapping of getenvb() is similarly also captured on import, and the function may not reflect future environment changes.

getenvb() is only available if supports_bytes_environ is True.

Availability: Unix.

Added in version 3.2.

os.get_exec_path(env=None)

Returns the list of directories that will be searched for a named executable, similar to a shell, when launching a process. env, when specified, should be an environment variable dictionary to lookup the PATH in. By default, when env is None, environ is used.

Added in version 3.2.

os.getegid()

Return the effective group id of the current process. This corresponds to the “set id” bit on the file being executed in the current process.

Availability: Unix, not WASI.

os.geteuid()

Return the current process’s effective user id.

Availability: Unix, not WASI.

os.getgid()

Return the real group id of the current process.

Availability: Unix.

The function is a stub on WASI, see WebAssembly platforms for more information.

os.getgrouplist(user, group, /)

Return list of group ids that user belongs to. If group is not in the list, it is included; typically, group is specified as the group ID field from the password record for user, because that group ID will otherwise be potentially omitted.

Availability: Unix, not WASI.

Added in version 3.3.

os.getgroups()

Return list of supplemental group ids associated with the current process.

Availability: Unix, not WASI.

Note

On macOS, getgroups() behavior differs somewhat from other Unix platforms. If the Python interpreter was built with a deployment target of 10.5 or earlier, getgroups() returns the list of effective group ids associated with the current user process; this list is limited to a system-defined number of entries, typically 16, and may be modified by calls to setgroups() if suitably privileged. If built with a deployment target greater than 10.5, getgroups() returns the current group access list for the user associated with the effective user id of the process; the group access list may change over the lifetime of the process, it is not affected by calls to setgroups(), and its length is not limited to 16. The deployment target value, MACOSX_DEPLOYMENT_TARGET, can be obtained with sysconfig.get_config_var().

os.getlogin()

Return the name of the user logged in on the controlling terminal of the process. For most purposes, it is more useful to use getpass.getuser() since the latter checks the environment variables LOGNAME or USERNAME to find out who the user is, and falls back to pwd.getpwuid(os.getuid())[0] to get the login name of the current real user id.

Availability: Unix, Windows, not WASI.

os.getpgid(pid)

Return the process group id of the process with process id pid. If pid is 0, the process group id of the current process is returned.

Availability: Unix, not WASI.

os.getpgrp()

Return the id of the current process group.

Availability: Unix, not WASI.

os.getpid()

Return the current process id.

The function is a stub on WASI, see WebAssembly platforms for more information.

os.getppid()

Return the parent’s process id. When the parent process has exited, on Unix the id returned is the one of the init process (1), on Windows it is still the same id, which may be already reused by another process.

Availability: Unix, Windows, not WASI.

Changed in version 3.2: Added support for Windows.

os.getpriority(which, who)

Get program scheduling priority. The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who denotes (respectively) the calling process, the process group of the calling process, or the real user ID of the calling process.

Availability: Unix, not WASI.

Added in version 3.3.

os.PRIO_PROCESS
os.PRIO_PGRP
os.PRIO_USER

Parameters for the getpriority() and setpriority() functions.

Availability: Unix, not WASI.

Added in version 3.3.

os.PRIO_DARWIN_THREAD
os.PRIO_DARWIN_PROCESS
os.PRIO_DARWIN_BG
os.PRIO_DARWIN_NONUI

Parameters for the getpriority() and setpriority() functions.

Availability: macOS

Added in version 3.12.

os.getresuid()

Return a tuple (ruid, euid, suid) denoting the current process’s real, effective, and saved user ids.

Availability: Unix, not WASI.

Added in version 3.2.

os.getresgid()

Return a tuple (rgid, egid, sgid) denoting the current process’s real, effective, and saved group ids.

Availability: Unix, not WASI.

Added in version 3.2.

os.getuid()

Return the current process’s real user id.

Availability: Unix.

The function is a stub on WASI, see WebAssembly platforms for more information.

os.initgroups(username, gid, /)

Call the system initgroups() to initialize the group access list with all of the groups of which the specified username is a member, plus the specified group id.

Availability: Unix, not WASI, not Android.

Added in version 3.2.

os.putenv(key, value, /)

Set the environment variable named key to the string value. Such changes to the environment affect subprocesses started with os.system(), popen() or fork() and execv().

Assignments to items in os.environ are automatically translated into corresponding calls to putenv(); however, calls to putenv() don’t update os.environ, so it is actually preferable to assign to items of os.environ. This also applies to getenv() and getenvb(), which respectively use os.environ and os.environb in their implementations.

Note

On some platforms, including FreeBSD and macOS, setting environ may cause memory leaks. Refer to the system documentation for putenv().

Raises an auditing event os.putenv with arguments key, value.

Changed in version 3.9: The function is now always available.

os.setegid(egid, /)

Set the current process’s effective group id.

Availability: Unix, not WASI, not Android.

os.seteuid(euid, /)

Set the current process’s effective user id.

Availability: Unix, not WASI, not Android.

os.setgid(gid, /)

Set the current process’ group id.

Availability: Unix, not WASI, not Android.

os.setgroups(groups, /)

Set the list of supplemental group ids associated with the current process to groups. groups must be a sequence, and each element must be an integer identifying a group. This operation is typically available only to the superuser.

Availability: Unix, not WASI.

Note

On macOS, the length of groups may not exceed the system-defined maximum number of effective group ids, typically 16. See the documentation for getgroups() for cases where it may not return the same group list set by calling setgroups().

os.setns(fd, nstype=0)

Reassociate the current thread with a Linux namespace. See the setns(2) and namespaces(7) man pages for more details.

If fd refers to a /proc/pid/ns/ link, setns() reassociates the calling thread with the namespace associated with that link, and nstype may be set to one of the CLONE_NEW* constants to impose constraints on the operation (0 means no constraints).

Since Linux 5.8, fd may refer to a PID file descriptor obtained from pidfd_open(). In this case, setns() reassociates the calling thread into one or more of the same namespaces as the thread referred to by fd. This is subject to any constraints imposed by nstype, which is a bit mask combining one or more of the CLONE_NEW* constants, e.g. setns(fd, os.CLONE_NEWUTS | os.CLONE_NEWPID). The caller’s memberships in unspecified namespaces are left unchanged.

fd can be any object with a fileno() method, or a raw file descriptor.

This example reassociates the thread with the init process’s network namespace:

fd = os.open("/proc/1/ns/net", os.O_RDONLY)
os.setns(fd, os.CLONE_NEWNET)
os.close(fd)

Availability: Linux >= 3.0 with glibc >= 2.14.

Added in version 3.12.

See also

The unshare() function.

os.setpgrp()

Call the system call setpgrp() or setpgrp(0, 0) depending on which version is implemented (if any). See the Unix manual for the semantics.

Availability: Unix, not WASI.

os.setpgid(pid, pgrp, /)

Call the system call setpgid() to set the process group id of the process with id pid to the process group with id pgrp. See the Unix manual for the semantics.

Availability: Unix, not WASI.

os.setpriority(which, who, priority)

Set program scheduling priority. The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value for who denotes (respectively) the calling process, the process group of the calling process, or the real user ID of the calling process. priority is a value in the range -20 to 19. The default priority is 0; lower priorities cause more favorable scheduling.