multiprocessing — Process-based parallelism

Source code: Lib/multiprocessing/


Availability: not Android, not iOS, not WASI.

This module is not supported on mobile platforms or WebAssembly platforms.

Introduction

multiprocessing is a package that supports spawning processes using an API similar to the threading module. The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing module allows the programmer to fully leverage multiple processors on a given machine. It runs on both POSIX and Windows.

The multiprocessing module also introduces APIs which do not have analogs in the threading module. A prime example of this is the Pool object which offers a convenient means of parallelizing the execution of a function across multiple input values, distributing the input data across processes (data parallelism). The following example demonstrates the common practice of defining such functions in a module so that child processes can successfully import that module. This basic example of data parallelism using Pool,

from multiprocessing import Pool

def f(x):
    return x*x

if __name__ == '__main__':
    with Pool(5) as p:
        print(p.map(f, [1, 2, 3]))

will print to standard output

[1, 4, 9]

See also

concurrent.futures.ProcessPoolExecutor offers a higher level interface to push tasks to a background process without blocking execution of the calling process. Compared to using the Pool interface directly, the concurrent.futures API more readily allows the submission of work to the underlying process pool to be separated from waiting for the results.

The Process class

In multiprocessing, processes are spawned by creating a Process object and then calling its start() method. Process follows the API of threading.Thread. A trivial example of a multiprocess program is

from multiprocessing import Process

def f(name):
    print('hello', name)

if __name__ == '__main__':
    p = Process(target=f, args=('bob',))
    p.start()
    p.join()

To show the individual process IDs involved, here is an expanded example:

from multiprocessing import Process
import os

def info(title):
    print(title)
    print('module name:', __name__)
    print('parent process:', os.getppid())
    print('process id:', os.getpid())

def f(name):
    info('function f')
    print('hello', name)

if __name__ == '__main__':
    info('main line')
    p = Process(target=f, args=('bob',))
    p.start()
    p.join()

For an explanation of why the if __name__ == '__main__' part is necessary, see Programming guidelines.

The arguments to Process usually need to be unpickleable from within the child process. If you tried typing the above example directly into a REPL it could lead to an AttributeError in the child process trying to locate the f function in the __main__ module.

Contexts and start methods

Depending on the platform, multiprocessing supports three ways to start a process. These start methods are

spawn

The parent process starts a fresh Python interpreter process. The child process will only inherit those resources necessary to run the process object’s run() method. In particular, unnecessary file descriptors and handles from the parent process will not be inherited. Starting a process using this method is rather slow compared to using fork or forkserver.

Available on POSIX and Windows platforms. The default on Windows and macOS.

fork

The parent process uses os.fork() to fork the Python interpreter. The child process, when it begins, is effectively identical to the parent process. All resources of the parent are inherited by the child process. Note that safely forking a multithreaded process is problematic.

Available on POSIX systems. Currently the default on POSIX except macOS.

Note

The default start method will change away from fork in Python 3.14. Code that requires fork should explicitly specify that via get_context() or set_start_method().

Changed in version 3.12: If Python is able to detect that your process has multiple threads, the os.fork() function that this start method calls internally will raise a DeprecationWarning. Use a different start method. See the os.fork() documentation for further explanation.

forkserver

When the program starts and selects the forkserver start method, a server process is spawned. From then on, whenever a new process is needed, the parent process connects to the server and requests that it fork a new process. The fork server process is single threaded unless system libraries or preloaded imports spawn threads as a side-effect so it is generally safe for it to use os.fork(). No unnecessary resources are inherited.

Available on POSIX platforms which support passing file descriptors over Unix pipes such as Linux.

Changed in version 3.4: spawn added on all POSIX platforms, and forkserver added for some POSIX platforms. Child processes no longer inherit all of the parents inheritable handles on Windows.

Changed in version 3.8: On macOS, the spawn start method is now the default. The fork start method should be considered unsafe as it can lead to crashes of the subprocess as macOS system libraries may start threads. See bpo-33725.

On POSIX using the spawn or forkserver start methods will also start a resource tracker process which tracks the unlinked named system resources (such as named semaphores or SharedMemory objects) created by processes of the program. When all processes have exited the resource tracker unlinks any remaining tracked object. Usually there should be none, but if a process was killed by a signal there may be some “leaked” resources. (Neither leaked semaphores nor shared memory segments will be automatically unlinked until the next reboot. This is problematic for both objects because the system allows only a limited number of named semaphores, and shared memory segments occupy some space in the main memory.)

To select a start method you use the set_start_method() in the if __name__ == '__main__' clause of the main module. For example:

import multiprocessing as mp

def foo(q):
    q.put('hello')

if __name__ == '__main__':
    mp.set_start_method('spawn')
    q = mp.Queue()
    p = mp.Process(target=foo, args=(q,))
    p.start()
    print(q.get())
    p.join()

set_start_method() should not be used more than once in the program.

Alternatively, you can use get_context() to obtain a context object. Context objects have the same API as the multiprocessing module, and allow one to use multiple start methods in the same program.

import multiprocessing as mp

def foo(q):
    q.put('hello')

if __name__ == '__main__':
    ctx = mp.get_context('spawn')
    q = ctx.Queue()
    p = ctx.Process(target=foo, args=(q,))
    p.start()
    print(q.get())
    p.join()

Note that objects related to one context may not be compatible with processes for a different context. In particular, locks created using the fork context cannot be passed to processes started using the spawn or forkserver start methods.

Libraries using multiprocessing or ProcessPoolExecutor should be designed to allow their users to provide their own multiprocessing context. Using a specific context of your own within a library can lead to incompatibilities with the rest of the library user’s application. Always document if your library requires a specific start method.

Warning

The 'spawn' and 'forkserver' start methods generally cannot be used with “frozen” executables (i.e., binaries produced by packages like PyInstaller and cx_Freeze) on POSIX systems. The 'fork' start method may work if code does not use threads.

Exchanging objects between processes

multiprocessing supports two types of communication channel between processes:

Queues

The Queue class is a near clone of queue.Queue. For example:

from multiprocessing import Process, Queue

def f(q):
    q.put([42, None, 'hello'])

if __name__ == '__main__':
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print(q.get())    # prints "[42, None, 'hello']"
    p.join()

Queues are thread and process safe. Any object put into a multiprocessing queue will be serialized.

Pipes

The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex (two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):
    conn.send([42, None, 'hello'])
    conn.close()

if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    print(parent_conn.recv())   # prints "[42, None, 'hello']"
    p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection object has send() and recv() methods (among others). Note that data in a pipe may become corrupted if two processes (or threads) try to read from or write to the same end of the pipe at the same time. Of course there is no risk of corruption from processes using different ends of the pipe at the same time.

The send() method serializes the object and recv() re-creates the object.

Synchronization between processes

multiprocessing contains equivalents of all the synchronization primitives from threading. For instance one can use a lock to ensure that only one process prints to standard output at a time:

from multiprocessing import Process, Lock

def f(l, i):
    l.acquire()
    try:
        print('hello world', i)
    finally:
        l.release()

if __name__ == '__main__':
    lock = Lock()

    for num in range(10):
        Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all mixed up.

Sharing state between processes

As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using multiple processes.

However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.

Shared memory

Data can be stored in a shared memory map using Value or Array. For example, the following code

from multiprocessing import Process, Value, Array

def f(n, a):
    n.value = 3.1415927
    for i in range(len(a)):
        a[i] = -a[i]

if __name__ == '__main__':
    num = Value('d', 0.0)
    arr = Array('i', range(10))

    p = Process(target=f, args=(num, arr))
    p.start()
    p.join()

    print(num.value)
    print(arr[:])

will print

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The 'd' and 'i' arguments used when creating num and arr are typecodes of the kind used by the array module: 'd' indicates a double precision float and 'i' indicates a signed integer. These shared objects will be process and thread-safe.

For more flexibility in using shared memory one can use the multiprocessing.sharedctypes module which supports the creation of arbitrary ctypes objects allocated from shared memory.

Server process

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array. For example,

from multiprocessing import Process, Manager

def f(d, l):
    d[1] = '1'
    d['2'] = 2
    d[0.25] = None
    l.reverse()

if __name__ == '__main__':
    with Manager() as manager:
        d = manager.dict()
        l = manager.list(range(10))

        p = Process(target=f, args=(d, l))
        p.start()
        p.join()

        print(d)
        print(l)

will print

{0.25: None, 1: '1', '2': 2}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process managers are more flexible than using shared memory objects because they can be made to support arbitrary object types. Also, a single manager can be shared by processes on different computers over a network. They are, however, slower than using shared memory.

Using a pool of workers

The Pool class represents a pool of worker processes. It has methods which allows tasks to be offloaded to the worker processes in a few different ways.

For example:

from multiprocessing import Pool, TimeoutError
import time
import os

def f(x):
    return x*x

if __name__ == '__main__':
    # start 4 worker processes
    with Pool(processes=4) as pool:

        # print "[0, 1, 4,..., 81]"
        print(pool.map(f, range(10)))

        # print same numbers in arbitrary order
        for i in pool.imap_unordered(f, range(10)):
            print(i)

        # evaluate "f(20)" asynchronously
        res = pool.apply_async(f, (20,))      # runs in *only* one process
        print(res.get(timeout=1))             # prints "400"

        # evaluate "os.getpid()" asynchronously
        res = pool.apply_async(os.getpid, ()) # runs in *only* one process
        print(res.get(timeout=1))             # prints the PID of that process

        # launching multiple evaluations asynchronously *may* use more processes
        multiple_results = [pool.apply_async(os.getpid, ()) for i in range(4)]
        print([res.get(timeout=1) for res in multiple_results])

        # make a single worker sleep for 10 seconds
        res = pool.apply_async(time.sleep, (10,))
        try:
            print(res.get(timeout=1))
        except TimeoutError:
            print("We lacked patience and got a multiprocessing.TimeoutError")

        print("For the moment, the pool remains available for more work")

    # exiting the 'with'-block has stopped the pool
    print("Now the pool is closed and no longer available")

Note that the methods of a pool should only ever be used by the process which created it.

Note

Functionality within this package requires that the __main__ module be importable by the children. This is covered in Programming guidelines however it is worth pointing out here. This means that some examples, such as the multiprocessing.pool.Pool examples will not work in the interactive interpreter. For example:

>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
...     return x*x
...
>>> with p:
...     p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_importlib.BuiltinImporter'>)>
AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_importlib.BuiltinImporter'>)>
AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_importlib.BuiltinImporter'>)>

(If you try this it will actually output three full tracebacks interleaved in a semi-random fashion, and then you may have to stop the parent process somehow.)

Reference

The multiprocessing package mostly replicates the API of the threading module.

Process and exceptions

class multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

Process objects represent activity that is run in a separate process. The Process class has equivalents of all the methods of threading.Thread.

The constructor should always be called with keyword arguments. group should always be None; it exists solely for compatibility with threading.Thread. target is the callable object to be invoked by the run() method. It defaults to None, meaning nothing is called. name is the process name (see name for more details). args is the argument tuple for the target invocation. kwargs is a dictionary of keyword arguments for the target invocation. If provided, the keyword-only daemon argument sets the process daemon flag to True or False. If None (the default), this flag will be inherited from the creating process.

By default, no arguments are passed to target. The args argument, which defaults to (), can be used to specify a list or tuple of the arguments to pass to target.

If a subclass overrides the constructor, it must make sure it invokes the base class constructor (super().__init__()) before doing anything else to the process.

Note

In general, all arguments to Process must be picklable. This is frequently observed when trying to create a Process or use a concurrent.futures.ProcessPoolExecutor from a REPL with a locally defined target function.

Passing a callable object defined in the current REPL session causes the child process to die via an uncaught AttributeError exception when starting as target must have been defined within an importable module in order to be loaded during unpickling.

Example of this uncatchable error from the child:

>>> import multiprocessing as mp
>>> def knigit():
...     print("Ni!")
...
>>> process = mp.Process(target=knigit)
>>> process.start()
>>> Traceback (most recent call last):
  File ".../multiprocessing/spawn.py", line ..., in spawn_main
  File ".../multiprocessing/spawn.py", line ..., in _main
AttributeError: module '__main__' has no attribute 'knigit'
>>> process
<SpawnProcess name='SpawnProcess-1' pid=379473 parent=378707 stopped exitcode=1>

See The spawn and forkserver start methods. While this restriction is not true if using the "fork" start method, as of Python 3.14 that is no longer the default on any platform. See Contexts and start methods. See also gh-132898.

Changed in version 3.3: Added the daemon parameter.

run()

Method representing the process’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the args and kwargs arguments, respectively.

Using a list or tuple as the args argument passed to Process achieves the same effect.

Example:

>>> from multiprocessing import Process
>>> p = Process(target=print, args=[1])
>>> p.run()
1
>>> p = Process(target=print, args=(1,))
>>> p.run()
1
start()

Start the process’s activity.

This must be called at most once per process object. It arranges for the object’s run() method to be invoked in a separate process.

join([timeout])

If the optional argument timeout is None (the default), the method blocks until the process whose join() method is called terminates. If timeout is a positive number, it blocks at most timeout seconds. Note that the method returns None if its process terminates or if the method times out. Check the process’s exitcode to determine if it terminated.

A process can be joined many times.

A process cannot join itself because this would cause a deadlock. It is an error to attempt to join a process before it has been started.

name

The process’s name. The name is a string used for identification purposes only. It has no semantics. Multiple processes may be given the same name.

The initial name is set by the constructor. If no explicit name is provided to the constructor, a name of the form ‘Process-N1:N2:…:Nk’ is constructed, where each Nk is the N-th child of its parent.

is_alive()

Return whether the process is alive.

Roughly, a process object is alive from the moment the start() method returns until the child process terminates.

daemon

The process’s daemon flag, a Boolean value. This must be set before start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child processes.

Note that a daemonic process is not allowed to create child processes. Otherwise a daemonic process would leave its children orphaned if it gets terminated when its parent process exits. Additionally, these are not Unix daemons or services, they are normal processes that will be terminated (and not joined) if non-daemonic processes have exited.

In addition to the threading.Thread API, Process objects also support the following attributes and methods:

pid

Return the process ID. Before the process is spawned, this will be None.

exitcode

The child’s exit code. This will be None if the process has not yet terminated.

If the child’s run() method returned normally, the exit code will be 0. If it terminated via sys.exit() with an integer argument N, the exit code will be N.

If the child terminated due to an exception not caught within run(), the exit code will be 1. If it was terminated by signal N, the exit code will be the negative value -N.

authkey

The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a random string using os.urandom().

When a Process object is created, it will inherit the authentication key of its parent process, although this may be changed by setting authkey to another byte string.

See Authentication keys.

sentinel

A numeric handle of a system object which will become “ready” when the process ends.

You can use this value if you want to wait on several events at once using multiprocessing.connection.wait(). Otherwise calling join() is simpler.

On Windows, this is an OS handle usable with the WaitForSingleObject and WaitForMultipleObjects family of API calls. On POSIX, this is a file descriptor usable with primitives from the select module.

Added in version 3.3.

terminate()

Terminate the process. On POSIX this is done using the SIGTERM signal; on Windows TerminateProcess() is used. Note that exit handlers and finally clauses, etc., will not be executed.

Note that descendant processes of the process will not be terminated – they will simply become orphaned.

Warning

If this method is used when the associated process is using a pipe or queue then the pipe or queue is liable to become corrupted and may become unusable by other process. Similarly, if the process has acquired a lock or semaphore etc. then terminating it is liable to cause other processes to deadlock.

kill()

Same as terminate() but using the SIGKILL signal on POSIX.

Added in version 3.7.

close()

Close the Process object, releasing all resources associated with it. ValueError is raised if the underlying process is still running. Once close() returns successfully, most other methods and attributes of the Process object will raise ValueError.

Added in version 3.7.

Note that the start(), join(), is_alive(), terminate() and exitcode methods should only be called by the process that created the process object.

Example usage of some of the methods of Process:

>>> import multiprocessing, time, signal
>>> mp_context = multiprocessing.get_context('spawn')
>>> p = mp_context.Process(target=time.sleep, args=(1000,))
>>> print(p, p.is_alive())
<...Process ... initial> False
>>> p.start()
>>> print(p, p.is_alive())
<...Process ... started> True
>>> p.terminate()
>>> time.sleep(0.1)
>>> print(p, p.is_alive())
<...Process ... stopped exitcode=-SIGTERM> False
>>> p.exitcode == -signal.SIGTERM
True
exception multiprocessing.ProcessError

The base class of all multiprocessing exceptions.

exception multiprocessing.BufferTooShort

Exception raised by Connection.recv_bytes_into() when the supplied buffer object is too small for the message read.

If e is an instance of BufferTooShort then e.args[0] will give the message as a byte string.

exception multiprocessing.AuthenticationError

Raised when there is an authentication error.

exception multiprocessing.TimeoutError

Raised by methods with a timeout when the timeout expires.

Pipes and Queues

When using multiple processes, one generally uses message passing for communication between processes and avoids having to use any synchronization primitives like locks.

For passing messages one can use Pipe() (for a connection between two processes) or a queue (which allows multiple producers and consumers).

The Queue, SimpleQueue and JoinableQueue types are multi-producer, multi-consumer FIFO queues modelled on the queue.Queue class in the standard library. They differ in that Queue lacks the task_done() and join() methods introduced into Python 2.5’s queue.Queue class.

If you use JoinableQueue then you must call JoinableQueue.task_done() for each task removed from the queue or else the semaphore used to count the number of unfinished tasks may eventually overflow, raising an exception.

One difference from other Python queue implementations, is that multiprocessing queues serializes all objects that are put into them using pickle. The object return by the get method is a re-created object that does not share memory with the original object.

Note that one can also create a shared queue by using a manager object – see Managers.

Note

multiprocessing uses the usual queue.Empty and queue.Full exceptions to signal a timeout. They are not available in the multiprocessing namespace so you need to import them from queue.

Note

When an object is put on a queue, the object is pickled and a background thread later flushes the pickled data to an underlying pipe. This has some consequences which are a little surprising, but should not cause any practical difficulties – if they really bother you then you can instead use a queue created with a manager.

  1. After putting an object on an empty queue there may be an infinitesimal delay before the queue’s empty() method returns False and get_nowait() can return without raising queue.Empty.

  2. If multiple processes are enqueuing objects, it is possible for the objects to be received at the other end out-of-order. However, objects enqueued by the same process will always be in the expected order with respect to each other.

Warning

If a process is killed using Process.terminate() or os.kill() while it is trying to use a Queue, then the data in the queue is likely to become corrupted. This may cause any other process to get an exception when it tries to use the queue later on.

Warning

As mentioned above, if a child process has put items on a queue (and it has not used JoinableQueue.cancel_join_thread), then that process will not terminate until all buffered items have been flushed to the pipe.

This means that if you try joining that process you may get a deadlock unless you are sure that all items which have been put on the queue have been consumed. Similarly, if the child process is non-daemonic then the parent process may hang on exit when it tries to join all its non-daemonic children.

Note that a queue created using a manager does not have this issue. See Programming guidelines.

For an example of the usage of queues for interprocess communication see Examples.

multiprocessing.Pipe([duplex])

Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.

If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is unidirectional: conn1 can only be used for receiving messages and conn2 can only be used for sending messages.

The send() method serializes the object using pickle and the recv() re-creates the object.

class multiprocessing.Queue([maxsize])

Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first puts an item on the queue a feeder thread is started which transfers objects from a buffer into the pipe.

The usual queue.Empty and queue.Full exceptions from the standard library’s queue module are raised to signal timeouts.

Queue implements all the methods of queue.Queue except for task_done() and join().

qsize()

Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this number is not reliable.

Note that this may raise NotImplementedError on platforms like macOS where sem_getvalue() is not implemented.

empty()

Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.

May raise an OSError on closed queues. (not guaranteed)

full()

Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.

put(obj[, block[, timeout]])

Put obj into the queue. If the optional argument block is True (the default) and timeout is None (the default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the queue.Full exception if no free slot was available within that time. Otherwise (block is False), put an item on the queue if a free slot is immediately available, else raise the queue.Full exception (timeout is ignored in that case).

Changed in version 3.8: If the queue is closed, ValueError is raised instead of AssertionError.

put_nowait(obj)

Equivalent to put(obj, False).

get([block[, timeout]])

Remove and return an item from the queue. If optional args block is True (the default) and timeout is None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds and raises the queue.Empty exception if no item was available within that time. Otherwise (block is False), return an item if one is immediately available, else raise the queue.Empty exception (timeout is ignored in that case).

Changed in version 3.8: If the queue is closed, ValueError is raised instead of OSError.

get_nowait()

Equivalent to get(False).

multiprocessing.Queue has a few additional methods not found in queue.Queue. These methods are usually unnecessary for most code:

close()

Close the queue: release internal resources.

A queue must not be used anymore after it is closed. For example, get(), put() and empty() methods must no longer be called.

The background thread will quit once it has flushed all buffered data to the pipe. This is called automatically when the queue is garbage collected.

join_thread()

Join the background thread. This can only be used after close() has been called. It blocks until the background thread exits, ensuring that all data in the buffer has been flushed to the pipe.

By default if a process is not the creator of the queue then on exit it will attempt to join the queue’s background thread. The process can call cancel_join_thread() to make join_thread() do nothing.

cancel_join_thread()

Prevent join_thread() from blocking. In particular, this prevents the background thread from being joined automatically when the process exits – see join_thread().

A better name for this method might be allow_exit_without_flush(). It is likely to cause enqueued data to be lost, and you almost certainly will not need to use it. It is really only there if you need the current process to exit immediately without waiting to flush enqueued data to the underlying pipe, and you don’t care about lost data.

Note

This class’s functionality requires a functioning shared semaphore implementation on the host operating system. Without one, the functionality in this class will be disabled, and attempts to instantiate a Queue will result in an ImportError. See bpo-3770 for additional information. The same holds true for any of the specialized queue types listed below.

class multiprocessing.SimpleQueue

It is a simplified Queue type, very close to a locked Pipe.

close()

Close the queue: release internal resources.

A queue must not be used anymore after it is closed. For example, get(), put() and empty() methods must no longer be called.

Added in version 3.9.

empty()

Return True if the queue is empty, False otherwise.

Always raises an OSError if the SimpleQueue is closed.

get()

Remove and return an item from the queue.

put(item)

Put item into the queue.

class multiprocessing.JoinableQueue([maxsize])

JoinableQueue, a Queue subclass, is a queue which additionally has task_done() and join() methods.

task_done()

Indicate that a formerly enqueued task is complete. Used by queue consumers. For each get() used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

join()

Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer calls task_done() to indicate that the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

Miscellaneous

multiprocessing.active_children()

Return list of all live children of the current process.

Calling this has the side effect of “joining” any processes which have already finished.

multiprocessing.cpu_count()

Return the number of CPUs in the system.

This number is not equivalent to the number of CPUs the current process can use. The number of usable CPUs can be obtained with os.process_cpu_count() (or len(os.sched_getaffinity(0))).

When the number of CPUs cannot be determined a NotImplementedError is raised.

Changed in version 3.13: The return value can also be overridden using the -X cpu_count flag or PYTHON_CPU_COUNT as this is merely a wrapper around the os cpu count APIs.

multiprocessing.current_process()

Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

multiprocessing.parent_process()

Return the Process object corresponding to the parent process of the current_process(). For the main process, parent_process will be None.

Added in version 3.8.

multiprocessing.freeze_support()

Add support for when a program which uses multiprocessing has been frozen to produce an executable. (Has been tested with py2exe, PyInstaller and cx_Freeze.)

One needs to call this function straight after the if __name__ == '__main__' line of the main module. For example:

from multiprocessing import Process, freeze_support

def f():
    print('hello world!')

if __name__ == '__main__':
    freeze_support()
    Process(target=f).start()

If the freeze_support() line is omitted then trying to run the frozen executable will raise RuntimeError.

Calling freeze_support() has no effect when the start method is not spawn. In addition, if the module is being run normally by the Python interpreter (the program has not been frozen), then freeze_support() has no effect.

multiprocessing.get_all_start_methods()

Returns a list of the supported start methods, the first of which is the default. The possible start methods are 'fork', 'spawn' and 'forkserver'. Not all platforms support all methods. See Contexts and start methods.

Added in version 3.4.

multiprocessing.get_context(method=None)

Return a context object which has the same attributes as the multiprocessing module.

If method is None then the default context is returned. Note that if the global start method has not been set, this will set it to the default method. Otherwise method should be 'fork', 'spawn', 'forkserver'. ValueError is raised if the specified start method is not available. See Contexts and start methods.

Added in version 3.4.

multiprocessing.get_start_method(allow_none=False)

Return the name of start method used for starting processes.

If the global start method has not been set and allow_none is False, then the start method is set to the default and the name is returned. If the start method has not been set and allow_none is True then None is returned.

The return value can be 'fork', 'spawn', 'forkserver' or None. See Contexts and start methods.

Added in version 3.4.

Changed in version 3.8: On macOS, the spawn start method is now the default. The fork start method should be considered unsafe as it can lead to crashes of the subprocess. See bpo-33725.

multiprocessing.set_executable(executable)

Set the path of the Python interpreter to use when starting a child process. (By default sys.executable is used). Embedders will probably need to do some thing like

set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))

before they can create child processes.

Changed in version 3.4: Now supported on POSIX when the 'spawn' start method is used.

Changed in version 3.11: Accepts a path-like object.

multiprocessing.set_forkserver_preload(module_names)

Set a list of module names for the forkserver main process to attempt to import so that their already imported state is inherited by forked processes. Any ImportError when doing so is silently ignored. This can be used as a performance enhancement to avoid repeated work in every process.

For this to work, it must be called before the forkserver process has been launched (before creating a Pool or starting a Process).

Only meaningful when using the 'forkserver' start method. See Contexts and start methods.

Added in version 3.4.

multiprocessing.set_start_method(method, force=False)

Set the method which should be used to start child processes. The method argument can be 'fork', 'spawn' or 'forkserver'. Raises RuntimeError if the start method has already been set and force is not True. If method is None and force is True then the start method is set to None. If method is None and force is False then the context is set to the default context.

Note that this should be called at most once, and it should be protected inside the if __name__ == '__main__' clause of the main module.

See Contexts and start methods.

Added in version 3.4.

Connection Objects

Connection objects allow the sending and receiving of picklable objects or strings. They can be thought of as message oriented connected sockets.

Connection objects are usually created using Pipe – see also Listeners and Clients.

class multiprocessing.connection.Connection
send(obj)

Send an object to the other end of the connection which should be read using recv().

The object must be picklable. Very large pickles (approximately 32 MiB+, though it depends on the OS) may raise a ValueError exception.

recv()

Return an object sent from the other end of the connection using send(). Blocks until there is something to receive. Raises EOFError if there is nothing left to receive and the other end was closed.

fileno()

Return the file descriptor or handle used by the connection.

close()

Close the connection.

This is called automatically when the connection is garbage collected.

poll([timeout])

Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If timeout is a number then this specifies the maximum time in seconds to block. If timeout is None then an infinite timeout is used.

Note that multiple connection objects may be polled at once by using multiprocessing.connection.wait().

send_bytes(buffer[, offset[, size]])

Send byte data from a bytes-like object as a complete message.

If offset is given then data is read from that position in buffer. If size is given then that many bytes will be read from buffer. Very large buffers (approximately 32 MiB+, though it depends on the OS) may raise a ValueError exception

recv_bytes([maxlength])

Return a complete message of byte data sent from the other end of the connection as a string. Blocks until there is something to receive. Raises EOFError if there is nothing left to receive and the other end has closed.

If maxlength is specified and the message is longer than maxlength then OSError is raised and the connection will no longer be readable.

Changed in version 3.3: This function used to raise IOError, which is now an alias of OSError.

recv_bytes_into(buffer[, offset])

Read into buffer a complete message of byte data sent from the other end of the connection and return the number of bytes in the message. Blocks until there is something to receive. Raises EOFError if there is nothing left to receive and the other end was closed.

buffer must be a writable bytes-like object. If offset is given then the message will be written into the buffer from that position. Offset must be a non-negative integer less than the length of buffer (in bytes).

If the buffer is too short then a BufferTooShort exception is raised and the complete message is available as e.args[0] where e is the exception instance.

Changed in version 3.3: Connection objects themselves can now be transferred between processes using Connection.send() and Connection.recv().

Connection objects also now support the context management protocol – see Context Manager Types. __enter__() returns the connection object, and __exit__() calls close().

For example:

>>> from multiprocessing import Pipe
>>> a, b = Pipe()
>>> a.send([1, 'hello', None])
>>> b.recv()
[1, 'hello', None]
>>> b.send_bytes(b'thank you')
>>> a.recv_bytes()
b'thank you'
>>> import array
>>> arr1 = array.array('i', range(5))
>>> arr2 = array.array('i', [0] * 10)
>>> a.send_bytes(arr1)
>>> count = b.recv_bytes_into(arr2)
>>> assert count == len(arr1) * arr1.itemsize
>>> arr2
array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])

Warning

The Connection.recv() method automatically unpickles the data it receives, which can be a security risk unless you can trust the process which sent the message.

Therefore, unless the connection object was produced using Pipe() you should only use the recv() and send() methods after performing some sort of authentication. See Authentication keys.

Warning

If a process is killed while it is trying to read or write to a pipe then the data in the pipe is likely to become corrupted, because it may become impossible to be sure where the message boundaries lie.

Synchronization primitives

Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multithreaded program. See the documentation for threading module.

Note that one can also create synchronization primitives by using a manager object – see Managers.

class multiprocessing.Barrier(parties[, action[, timeout]])

A barrier object: a clone of threading.Barrier.

Added in version 3.3.

class multiprocessing.BoundedSemaphore([value])

A bounded semaphore object: a close analog of threading.BoundedSemaphore.

A solitary difference from its close analog exists: its acquire method’s first argument is named block, as is consistent with Lock.acquire().

Note

On macOS, this is indistinguishable from Semaphore because sem_getvalue() is not implemented on that platform.

class multiprocessing.Condition([lock])

A condition variable: an alias for threading.Condition.

If lock is specified then it should be a Lock or RLock object from