AI-generated Key Takeaways
-
The AccelerationService API helps identify the optimal acceleration configuration for TensorFlow Lite models.
-
It provides methods to create the service, generate and select the best configuration, and validate configurations through benchmarking.
-
generateBestConfig
automatically finds the best performing, accuracy-validated acceleration configuration. -
validateConfig
andvalidateConfigs
enable testing specific configurations or a collection of them. -
Developers can create an AccelerationService instance using a context and an optional executor.
Acceleration Service API
Public Method Summary
static AccelerationService | |
static AccelerationService | |
Task<ValidatedAccelerationConfigResult> |
generateBestConfig(Model
model,
ValidationConfig validationConfig)
Generates a list of candidate
AccelerationConfig s and runs Mini-benchmark over them.
|
Task<ValidatedAccelerationConfigResult> |
selectBestConfig(Model
model, Iterable<AccelerationConfig>
configs,
ValidationConfig validationConfig)
Runs Mini-benchmark over a collection of
configs .
|
Task<ValidatedAccelerationConfigResult> |
validateConfig(Model
model,
AccelerationConfig accelerationConfig,
ValidationConfig validationConfig)
Runs Mini-benchmark with the given
model ,
accelerationConfig , and validationConfig .
|
Task<Iterable<ValidatedAccelerationConfigResult>> |
validateConfigs(Model
model, Iterable<AccelerationConfig>
configs,
ValidationConfig validationConfig)
Runs Mini-benchmark over a collection of
AccelerationConfig .
|
Inherited Method Summary
Public Methods
public static AccelerationService create (Context context)
Creates
AccelerationService
instance.
public static AccelerationService create (Context context, Executor executor)
Creates
AccelerationService
instance. Validation tests will run with the given
executor
.
public Task<ValidatedAccelerationConfigResult> generateBestConfig (Model model, ValidationConfig validationConfig)
Generates a list of candidate
AccelerationConfig
s and runs Mini-benchmark over them. Among the ones that
passed accuracy checks, returns the one with the best performance. Returns a
Task
of null if
none of the configs
passes validation check. Returns a failed
Task
if
benchmarking failed.
public Task<ValidatedAccelerationConfigResult> selectBestConfig (Model model, Iterable<AccelerationConfig> configs, ValidationConfig validationConfig)
public Task<ValidatedAccelerationConfigResult> validateConfig (Model model, AccelerationConfig accelerationConfig, ValidationConfig validationConfig)
Runs Mini-benchmark with the given model
,
accelerationConfig
, and validationConfig
. The benchmark
result will also be cached by the acceleration service.
public Task<Iterable<ValidatedAccelerationConfigResult>> validateConfigs (Model model, Iterable<AccelerationConfig> configs, ValidationConfig validationConfig)
Runs Mini-benchmark over a collection of
AccelerationConfig
.